
Audit Report
Produced by CertiK

for

23rd Dec, 2019

CertiK Audit Report
For MIR

Request Date: 2019-12-18
Revision Date: 2019-12-24

Formal Verification Platform for
Smart Contracts and Blockchain Ecosystems

Contents
Disclaimer 1

About CertiK 2

Executive Summary 3

Vulnerability Classification 3

Testing Summary 4
Audit Score . 4
Type of Issues . 4
Vulnerability Details . 5

Manual Review Notes 6

page i

Formal Verification Platform for
Smart Contracts and Blockchain Ecosystems

Disclaimer
This report is subject to the terms and conditions (including without limitation, description
of services, confidentiality, disclaimer and limitation of liability) set forth in the Verification
Services Agreement between CertiK and MIR(the “Company”), or the scope of services/verifi-
cation, and terms and conditions provided to the Company in connection with the verification
(collectively, the “Agreement”). This report provided in connection with the Services set forth
in the Agreement shall be used by the Company only to the extent permitted under the terms
and conditions set forth in the Agreement. This report may not be transmitted, disclosed, re-
ferred to or relied upon by any person for any purposes without CertiK’s prior written consent.

page 1

Formal Verification Platform for
Smart Contracts and Blockchain Ecosystems

About CertiK
CertiK is a technology-led blockchain security company founded by Computer Science profes-
sors from Yale University and Columbia University built to prove the security and correctness
of smart contracts and blockchain protocols.

CertiK, in partnership with grants from IBM and the Ethereum Foundation, has developed a
proprietary Formal Verification technology to apply rigorous and complete mathematical rea-
soning against code. This process ensures algorithms, protocols, and business functionalities
are secured and working as intended across all platforms.

CertiK differs from traditional testing approaches by employing Formal Verification to math-
ematically prove blockchain ecosystem and smart contracts are hacker-resistant and bug-free.
CertiK uses this industry-leading technology together with standardized test suites, static
analysis, and expert manual review to create a full-stack solution for our partners across the
blockchain world to secure 6.2B in assets.

For more information: https://certik.org/

page 2

https://certik.org/

Formal Verification Platform for
Smart Contracts and Blockchain Ecosystems

Executive Summary
This report has been prepared for MIR to discover issues and vulnerabilities in the source code
of their smart contracts. A comprehensive examination has been performed, utilizing CertiK’s
Formal Verification Platform, Static Analysis, and Manual Review techniques.

The auditing process pays special attention to the following considerations:

• Testing the smart contracts against both common and uncommon attack vectors.

• Assessing the codebase to ensure compliance with current best practices and industry
standards.

• Ensuring contract logic meets the specifications and intentions of the client.

• Cross referencing contract structure and implementation against similar smart contracts
produced by industry leaders.

• Thorough line-by-line manual review of the entire codebase by industry experts.

Vulnerability Classification
CertiK categorizes issues into three buckets based on overall risk levels:

Code implementation does not match specification, which could result in the loss of funds for
contract owner or users.

Code implementation does not match the specification under certain conditions, which could
affect the security standard by loss of access control.

Code implementation does not follow best practices, or uses suboptimal design patterns, which
could lead to security vulnerabilities further down the line.

page 3

Formal Verification Platform for
Smart Contracts and Blockchain Ecosystems

Testing Summary

Type of Issues
CertiK’s smart label engine applied 100% formal verification coverage on the source code.
Our team of engineers has scanned the source code using proprietary static analysis tools and
code-review methodologies. The following technical issues were found:

Title Description Issues SWC ID
Integer Overflow
and Underflow

An overflow/underflow occurs when an arithmetic oper-
ation reaches the maximum or minimum size of a type.

0 SWC-101

Function
Incorrectness Function implementation does not meet specification,

leading to intentional or unintentional vulnerabilities.
0

Buffer Overflow An attacker can write to arbitrary storage locations of
a contract if array of out bound happens

0 SWC-124

Reentrancy A malicious contract can call back into the calling con-
tract before the first invocation of the function is fin-
ished.

0 SWC-107

Transaction
Order
Dependence A race condition vulnerability occurs when code de-

pends on the order of the transactions submitted to it.
0 SWC-114

Insecure
Randomness Using block attributes to generate random numbers is

unreliable, as they can be influenced by miners to some
degree.

0 SWC-120

Delegatecall to
Untrusted Callee

Calling untrusted contracts is very dangerous, so the
target and arguments provided must be sanitized.

0 SWC-112

State Variable

page 4

Formal Verification Platform for
Smart Contracts and Blockchain Ecosystems

Default Visibility Labeling the visibility explicitly makes it easier to catch
incorrect assumptions about who can access the vari-
able.

0 SWC-108

Function Default
Visibility

Functions are public by default, meaning a malicious
user can make unauthorized or unintended state changes
if a developer forgot to set the visibility.

0 SWC-100

Uninitialized
Variables Uninitialized local storage variables can point to other

unexpected storage variables in the contract.
0 SWC-109

Assertion Failure The assert() function is meant to assert invariants.
Properly functioning code should never reach a failing
assert statement.

0 SWC-110

0 SWC-
111

Unused Variables Unused variables reduce code quality 0

Vulnerability Details

No issue found.

No issue found.

No issue found.

page 5

Formal Verification Platform for
Smart Contracts and Blockchain Ecosystems

Manual Review Notes
Source Code SHA-256 Checksum

• eosio.token.hpp
1dcb6f8994956c1f53f9400324c0a23069fdd43b217565134fb4125a3cfc83ed

• eosio.token.cpp
af27f8d968be0a4f00b725814dbf4e076cf0202b8fb81a27d437bef7d6246829

Summary
CertiK worked closely with MIR to audit the design and implementation of its soon-to-be re-
leased smart contract. To ensure comprehensive protection, the source code was analyzed by
the proprietary CertiK formal verification engine and manually reviewed by our smart contract
experts and engineers. That end-to-end process ensures proof of stability as well as a hands-
on, engineering-focused process to close potential loopholes and recommend design changes in
accordance with best practices.

Overall, we found MIR’s smart contracts to follow good practices. With the final update of
source code and delivery of the audit report, we conclude that the contract is structurally sound
and not vulnerable to any classically known anti-patterns or security issues. The audit report
itself is not necessarily a guarantee of correctness or trustworthiness, and we always recommend
to seek multiple opinions, continually improve the codebase, and perform additional tests before
the mainnet release.

Persistence Tables
The MIRCoin smart contract uses 2 multi-index tables to store data.

Table Table name Read by functions Written by functions

acounts "acounts"

sub_balance(),
add_balance(),

open(),
close(),

get_balance()

sub_balance(),
add_balance(),

open()

stats "stat"

create(),
issue(),
retire(),

transfer(),
open(),

get_supply()

create(),
issue(),
retire()

• Table accounts:

page 6

Formal Verification Platform for
Smart Contracts and Blockchain Ecosystems

Property Type Key Description
balance eosio::asset primary: balance.symbol.code().raw()

• Table stats:

Property Type Key Description
supply eosio::asset primary: supply.symbol.code().raw()

max_supply eosio::asset
issuer eosio::name

Functions
The MIRCoin smart contract consists of 10 functions.

Function Static Access Auth Supply change Balance change
create() public _self
issue() public st.issuer st.supply += quantity
retire() public st.issuer st.supply -= quantity

transfer() public from
from.balance -= quantity
to.balance += quantity

open() public ram_payer
close() public owner

get_supply() ✓ public
get_balance() ✓ public
sub_balance() private from.balance -= quantity
add_balance() private to.balance += quantity

Recommendations
Items in this section are not critical to the overall functionality of MIR’s smart contracts;
however, we leave it to the client’s discretion to decide whether to address them before the final
deployment of source codes. Recommendations are labeled CRITICAL , MAJOR , MINOR ,
INFO , and DISCUSSION in decreasing significance level.

eosio.token.cpp

• INFO Too many check() calls which might cause confusion. Recommend extracting
similar code into separate functions and following the single responsibility principle. As
an example, we can define a function
void is_valid_quantity (const asset& quantity, const string& memo) {

check(quantity.is_valid(), "invalid quantity");
check(quantity.amount > 0, memo);

}

page 7

Formal Verification Platform for
Smart Contracts and Blockchain Ecosystems

to replace the following check() calls:
void token::create(...) {

...
check(maximum_supply.is_valid(), "invalid supply");
check(maximum_supply.amount > 0, "max-supply must be positive");
...

}

void token::issue(...) {
...
check(quantity.is_valid(), "invalid quantity");
check(quantity.amount > 0, "must issue positive quantity");
...

}

void token::retire(...) {
...
check(quantity.is_valid(), "invalid quantity");
check(quantity.amount > 0, "must retire positive quantity");
...

}

void token::transfer(...) {
...
check(quantity.is_valid(), "invalid quantity");
check(quantity.amount > 0, "must transfer positive quantity");
...

}

Best practice
Smart contract development requires a particular engineering mindset. A failure in the initial
construction can be catastrophic, and changing the project after the fact can be exceedingly
difficult.
To ensure success and to avoid the challenges above smart contracts should here to best prac-
tices at their conception. Below, we summarized a checklist of key points that help to indicate a
high overall quality of the current project. (✓ indicates satisfaction; × indicates unsatisfaction;
− indicates inapplicablility)

Security

Identifying security related issues within each contract and within the system of contracts.
Some of the commonly known vulnerabilities that were considered are listed below.

✓ No numerical overflows: All numerical calculations must be protected against potential
overflow and underflow in arithmetic operations.

✓ Authorization checks: All sensitive actions in the contract require authorizations.

− Apply checks: Using the standard EOSIO_DISPATCH for the apply dispatching.

✓ Memory management: Proper use of pointers and references.

✓ Persistent data handling: Handling persistent data on RAM. Proper use of multi index
table

page 8

Formal Verification Platform for
Smart Contracts and Blockchain Ecosystems

✓ String parameter length: To ensure string parameters to actions are not unbounded in
length the string parameters.

✓ Safe from rollback attacks.

✓ RAM fill up protection (RAM DoS): Storing all items in the user’s RAM space rather
than the contract RAM except for actions requiring the contract’s _self permission.

✓ CPU bandwidth protection (CPU DoS): All actions in the contract are initiated by the
caller of the contract therefore the caller would need to have enough staked CPU resources
to perform the called action.

✓ Source code version: The contract code has been updated to compile with a recent version
of the eosio compiler tools.

Code Correctness and Quality

The primary areas of focus include:

✓ Correctness

✓ Readability

✓ Sections of code with high complexity

✓ Quantity and quality of test coverage

page 9

	Disclaimer
	About CertiK
	Executive Summary
	Vulnerability Classification
	Testing Summary
	Audit Score
	Type of Issues
	Vulnerability Details

	Manual Review Notes

